Exit Status

Description of GNU doc

The exit status of an executed command is the value returned by the waitpid system call or equivalent function. Exit statuses fall between 0 and 255, though, as explained below, the shell may use values above 125 specially. Exit statuses from shell builtins and compound commands are also limited to this range. Under certain circumstances, the shell will use special values to indicate specific failure modes.

For the shell’s purposes, a command which exits with a zero exit status has succeeded. A non-zero exit status indicates failure. This seemingly counter-intuitive scheme is used so there is one well-defined way to indicate success and a variety of ways to indicate various failure modes. When a command terminates on a fatal signal whose number is N, Bash uses the value 128+N as the exit status.

If a command is not found, the child process created to execute it returns a status of 127. If a command is found but is not executable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status is greater than zero.

The exit status is used by the Bash conditional commands (see Conditional Constructs) and some of the list constructs (see Lists of Commands).

All of the Bash builtins return an exit status of zero if they succeed and a non-zero status on failure, so they may be used by the conditional and list constructs. All builtins return an exit status of 2 to indicate incorrect usage, generally invalid options or missing arguments.

The exit status of the last command is available in the special parameter $? (see Special Parameters).

From https://www.gnu.org/software/bash/manual/html_node/Exit-Status.html

Exit Codes With Special Meanings

Exit Code Number Meaning Example Comments
1 Catchall for general errors let “var1 = 1/0” Miscellaneous errors, such as “divide by zero” and other impermissible operations
2 Misuse of shell builtins (according to Bash documentation) empty_function() {} Missing keyword or command, or permission problem (and diff return code on a failed binary file comparison).
126 Command invoked cannot execute /dev/null Permission problem or command is not an executable
127 “command not found” illegal_command Possible problem with $PATH or a typo
128 Invalid argument to exit exit 3.14159 exit takes only integer args in the range 0 - 255 (see first footnote)
128+n Fatal error signal “n” kill -9 $PPID of script $? returns 137 (128 + 9)
130 Script terminated by Control-C Ctl-C Control-C is fatal error signal 2, (130 = 128 + 2, see above)
255* Exit status out of range exit -1 exit takes only integer args in the range 0 - 255

According to the above table, exit codes 1 - 2, 126 - 165, and 255 [1] have special meanings, and should therefore be avoided for user-specified exit parameters. Ending a script with exit 127 would certainly cause confusion when troubleshooting (is the error code a “command not found” or a user-defined one?). However, many scripts use an exit 1 as a general bailout-upon-error. Since exit code 1 signifies so many possible errors, it is not particularly useful in debugging.

There has been an attempt to systematize exit status numbers (see /usr/include/sysexits.h), but this is intended for C and C++ programmers. A similar standard for scripting might be appropriate. The author of this document proposes restricting user-defined exit codes to the range 64 - 113 (in addition to 0, for success), to conform with the C/C++ standard. This would allot 50 valid codes, and make troubleshooting scripts more straightforward. [2] All user-defined exit codes in the accompanying examples to this document conform to this standard, except where overriding circumstances exist, as in Example 9-2.

Issuing a $? from the command-line after a shell script exits gives results consistent with the table above only from the Bash or sh prompt. Running the C-shell or tcsh may give different values in some cases.

From: https://tldp.org/LDP/abs/html/exitcodes.html#FTN.AEN23629

Copyright © 2024 Dyrone Teng